

Assessing the homogeneity of guitar tones

LAUM

Outline

- Context of the PAFI project (Platform to aid in the manufacture of musical instruments)
- Aims at providing automated software tools to analyze measures
- Automatic segmentation, pitch and inharmonicity estimation
- Subspace Method and Enumeration for the spectral content of isolated tones
- Proposal to assess the decay of notes along the whole range by measuring the mobility

Overall system

Automatic segmentation

Pitch and inharmonicity estimation

Subspace analysis of partials:

- Narrow band filtering
- ESPRIT method for estimation of modal damping and frequency
- ESTER method for enumeration of partial

Decay analysis with EDC

- Computing of the EDC curve
- Derivation of short time decay : EDC(200ms)

Synthesis (Woodhouse, AA 2004)

- Derive the response from the Y11 measurement
- Spectral domain synthesis, the response is derived by IFFT
- Uses a model for modal string damping taken from the quoted paper

Bertrand David⁽¹⁾, François Gautier⁽²⁾, Marthe Curtit⁽³⁾, Alain Raifort⁽⁴⁾, Benjamin Elie⁽⁵⁾

- (1) Télécom ParisTech, Institut Mines-Télécom, CNRS LTCI, Paris
- (2) Laboratoire d'Acoustique de l'Université du Maine, Le Mans
- (3) Institut Technologique Européen des Métiers de la Musique, Le Mans
- (4) Luthier, theluthier.com
- (5) Laboratoire Lorrain de Recherche en Informatique et Applications

•Iterative detection of partials

$$f_{n+1} = 2 f_n - f_{n-1}$$

Regression with

$$f_n = n f_0 \sqrt{1 + bn^2}$$

Subspace method (ESPRIT)

• Signal model:

$$x(t) = \sum_{k} b_{k} z_{k}^{t} + b(t)$$

Noise and Signal subspace

$$S \perp N$$
, $E_x = S \oplus N$

Rotational Invariance

$$W_{\uparrow} = W_{\downarrow} R$$

Enumeration (ESTER)

design a function J which is maximum when the rotational invariance is satisfied.

$$E(p) = W_{\uparrow}(p) - W_{\downarrow}(p)R(p) J(p) = 1/||E(p)||^{2}$$

A2 example

EDC = Energy Decay Curveenergy remaining at t

$$E_{dc} = \int_{t}^{\infty} x^{2}(t) dt$$

• Since only transverse motion is considered: the faster decay is likely to be involved.

Spectral (hybrid) Synthesis

Reciprocity principle

$$f(t, x_p) = f_0 u(t) \rightarrow V_{br} = V_0 \Leftrightarrow$$

$$f(t, x_{br}) = f_0 u(t) \rightarrow V(x_p) = V_0$$

 Derivation of the bridge coupled mobility

$$Yc^{-1} = (Y_{string}^{-1} + Y_{bridge}^{-1})^{-1}$$

 Transfer function H from the bridge to the plucking point (here we also take into account a plectrum width)

$$\gamma(t) = TF^{-1}[H(\omega)Y_c(\omega)]$$

Conclusion

- A first step to describe the temporal decaying behavior of a guitar for all notes from mobility measurements
- Largely automated analysis
- Next steps: more tests for robustness, to take into account both polarizations, adjusting the string damping, non zero initial velocity.

